Space Administration

National Aeronautics Coronagraph Options for Exoplanet Finding

and Characterization

TPF-C Systems Manager: Marie Levine (JPL 383)

PIs: S. Shaklan (JPL 383), J. Trauger (JPL 326), O. Guyon (Subaru), J. Kasdin & D. Spergel (Princeton), M. Shao (JPL), W. Cash (CU)

Project Objective FINDING LIFE BEYOND OUR SUN

- · Coronagraphy uses direct imaging to find exoplanets and characterize their spectra and orbits in the visible.
- Exoplanet size capability scaled to mission cost: Jupiters, Super-Earths, Earths
- Ongoing studies will identify most promising coronagraph design (science, cost, risk, technology) for allocated budget ranges and launch dates.

Recent Results

- ROSES Mission Concept Study proposals for various probe & flagship coronagraph concepts: Internal Occulters, External Occulter, Hybrid
- High Contrast Imaging Testbed (HCIT) demonstrates starlight suppression technology currently exists for:
 - > Jupiters in 6% broadband light, with periodic wavefront resets
 - ➤ Earths in monochromatic light, with aggressive WF stability requiremts¹
- FB1 (Flight Baseline) Flagship mission study establishes desired science, system requirements, technology and analyses for coronagraph mission design²

Project Description

Pupil Plane Masks³

Easy to manufacture, easy to achromatize, simplest design, low throughput, large IWA.

Image Plane Masks¹

Band-Limited Mask has best performance so far, good aberration rejection, hard to achromatize. moderate throughput, most mature

Internal Coronagraphs

No optics in image plane, most complicated to implement, throughput and IWA similar to

Pupil Remapping (PIAA)4

throughput, small IWA & PM, challenging optics, unknown WFC issues

Hybrid Coronagraph⁷

Reduces aggressive WF stability requirements on internal coronagraph, provides better agility, broadband performance, reduces risk sequential 2-phase mission

Benefits to NASA and JPL

"Direct imaging may be the only means for establishing the habitability or signs of life on any exoplanet" ⁸

Publications

- 1. Trauger and Traub, *Nature*, 446(7137) (2007)
- 2. Levine et al., TPF-C Science and Technology Definition Team (STDT) Report (2006)
- 3. Kasdin et al. Applied Optics, 44,7 (2005)
- 4. Guyon et al., *ApJ*, 644, 1246 (2006)
- 5. Shao et al., Comptes Rendus-Physique, 2007
- 6. Cash, Nature (2006)
- 7. Traub & Kasdin, Exoplanet Task Force White Paper (2007)
- 8. Astronomy and Astrophysics Advisory Committee, "Worlds Beyond: Report of the ExoPlanet Task Force", Draft, Feb 2007